\qquad

Balancing Equations Challenge

Part A: Parts \& Pieces
(1) Circle each subscript in each chemical formula.
(2) Draw a square around each coefficient.
(3) Answer the questions related to each chemical formula
O_{2}

What element does the O represent?
\qquad

How many atoms of each element are in the formula shown? $\mathrm{C}=$ \qquad $\mathrm{O}=$ $=$

$5 \mathrm{H}_{2}$

How many atoms of Hydrogen are in this formula as shown?
$2 \mathrm{C}_{2} \mathrm{H}_{6}$
How many atoms each element are in the formula shown? $\mathrm{C}=\ldots \quad \mathrm{H}=$

CO_{2}

$2 \mathrm{Na}_{2} \mathrm{SO}_{4}$
How many atoms each element are in the formula shown?
$\mathrm{Na}=$ \qquad $S=$ \qquad $\mathrm{O}=$ \qquad , $\mathrm{S}=$

Part B: Label the chemical equation using PRODUCT, REACTANTS, SUBSCRIPT, COEFFICIENT, and YIELDS.

Part C: Balance each of the following equations
Remember \rightarrow List the atoms, count, and solve!
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{Na}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}$
$\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
$\mathrm{P}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{6}$
$\mathrm{C}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}$
$\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}+\mathrm{O}_{2}$
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CaCl}_{2} \rightarrow \mathrm{CaSO}_{4}+\mathrm{NaCl}$

How many total molecules are there? $-4 \mathrm{H}_{2} \mathrm{O}$ -8 NaCl	How many total atoms are there? $-4 \mathrm{H}_{2} \mathrm{O}$ -8 NaCl
$\mathrm{Li}_{2} \mathrm{O}+\mathrm{MgCl}_{2} \rightarrow 2 \mathrm{LiCl}+\mathrm{MgO}$ Circle the second reactant Underline the first product How many Lithium atoms on the product side? \qquad How many Chlorine atoms on the reactant side? \qquad	$2 \mathrm{~K}_{3} \mathrm{~N}+3 \mathrm{CaCrO}_{4} \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}+3 \mathrm{~K}_{2} \mathrm{CrO}_{4}$ Circle the second product. Underline the first reactant. How many potassium atoms on the reactant side? \qquad How many oxygen atoms on the product side? \qquad
$2 \mathrm{AlCl}_{3}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{NaCl}$ Circle the first reactant Underline the second product How many Sodium(Na) atoms on the reactant side? \qquad How many table salt (NaCl) molecules on the product side? \qquad	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$ Circle the second reactant Underline the first product How many totals atoms on the reactant side? \qquad How many total molecules on the product side? \qquad
\qquad Expand out these compounds $3 \mathrm{MgCl}_{2}=\mathrm{MgCl}_{2}+\mathrm{MgCl}_{2}+\mathrm{MgCl}_{2}$ (example) $4 \mathrm{H}_{2}=$ $2 \mathrm{Al}_{2} \mathrm{O}_{3}=$ $\mathrm{BeO}=$ $5 \mathrm{Li}_{2} \mathrm{O}=$	Is this an open or closed reaction? Will you be able to observe the Law of Conservation of Mass with this set up? Why or Why Not?
Why do we balance chemical reactions? Angel balanced the following reaction: $\mathbf{B e}+\mathbf{O}_{2} \rightarrow \mathbf{B e O}$, when she was finished, the equation looked like this: $\mathbf{B e}+\mathbf{O}$ \rightarrow BeO Did she balance it correctly? Why or why not	Identify the following reactions as Balanced (B) or Unbalanced (U) $\begin{aligned} & \mathrm{P}_{4}+3 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}- \\ & 2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ \qquad $\mathrm{Al}+\mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+\mathrm{H}_{2}$ \qquad
Balance the following chemical reactions.	

